Prof. Dr. Hans-Peter Seidel Dr. Michael Wand Nils Hasler, Jens Kerber, Thomas Schultz, Carsten Stoll, Martin Sunkel

Geometric Modeling

Assignment sheet 11 (Subdivision, Implicit Surfaces, and Topology, due July 10th 2008)

(1) Chaikin's Corner Cutting [3 points]

Consider a closed control polygon. Chaikin's algorithm can be formulated as subdividing each linear segment 1:2:1 and using the arising points as the control points of the refined control polygon (cf. illustration). Show that the limit curve is a C1-continuous, piecewise quadratic Bézier curve.

Hint: Remember the De Casteljau algorithm.

(2) Wavelet Compression [2 points]

Consider an orthonormal Wavelet basis $u_1(x),...,u_m(x)$ ($\langle u_i | u_j \rangle = \delta_{ij}$) and let $c_1,...,c_m$ be coefficients such that $f(x) = \sum_{i=1}^m c_i u_i(x)$. Let $\pi(i)$ be a permutation of 1,...,m and

 $\hat{f}(x) = \sum_{i=1}^{m} c_{\pi(i)} u_{\pi(i)}(x) \text{ be the approximation to f produced by omitting the last } m - \hat{m}$ coefficients with respect to π . Show that for a given \hat{m} , π minimizes the squared error $\left\|f(x) - \hat{f}(x)\right\|^2 = \langle f(x) - \hat{f}(x) | f(x) - \hat{f}(x) \rangle$ if it sorts the c_i by decreasing magnitude.

- (3) Marching Squares [4 points] Consider the function $f(x,y)=4x^2y-y^2-2x^2+0.25$
 - a. Sketch the isocontour f(x,y)=0 over $(x,y)\in (0,1)\times (0,1)$. Mark positive and negative regions.
 - b. Evaluate f at (0,0), (0,1), (1,0) and (1,1). Sketch all possible lines that a first order accurate marching squares algorithm would produce. Does any one of them correspond to the topology of the true isocontour, as found in (a)?

- c. Structurally unstable cases are destroyed by an arbitrarily small perturbation and often neglected by standard algorithms. Show that in bilinearly interpolated fields, self-intersecting isolines are structurally unstable.
 Hint: What properties do the four scalars s₁, s₂, s₃, s₄ at the corners (0,0), (0,1) (1,0) (1,1) of the unit square need to have such that a self-intersection within (0,1)×(0,1) can occur? What type of function results from their bilinear interpolation? When do isolines cross, and what happens if you slightly perturb the isovalue or any of the s_i?
- (4) Metric Spaces and Open Sets [3 points]
 - a. Prove the following theorem: If two metrics d₁ and d₂ on the same set X have the property that for any ϵ >0, there exists a δ >0 such that d₁(x,y)< $\delta \Rightarrow$ d₂(x,y)< ϵ and d₂(x,y)< $\delta \Rightarrow$ d₁(x,y)< ϵ , then these metrics define the same open sets in X.
 - b. Use the theorem from (a) to show that a function $f:\mathbb{R}^n \to \mathbb{R}^k$ which is ε - δ -continuous with respect to any single one of the following metrics is continuous with respect to all of them:

$$d_1(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \qquad d_2(x,y) = \sum_{i=1}^n |x_i - y_i| \qquad d_3(x,y) = \max|x_i - y_i|$$

- (5) Complexes [5 points]
 - a. In a triangulated surface, let V_n denote the number of vertices which have degree n (i.e., at which n edges meet). Consider a triangulation of the sphere in which all vertices have either degree 5 or 6. What are the possible values of V₅?
 - b. Consider a regular triangulation of a torus, i.e., the same number *n* of triangles meet at each vertex. What are the possible values of *n*?
 - c. Consider a closed surface in which each face is a pentagon and four faces meet at each vertex. Show that if the number of faces is not a multiple of 8, then the surface is not orientable.
- (6) Stars and Links [3 points]

Let K be a simplicial 2-complex that triangulates the closed disk. Let a and b be interior vertices, u and v be boundary vertices. Let ab be an interior edge, uv a boundary edge. Draw K such that it contains (among others) the specified vertices and edges. Then, draw the star and link of the following subsets: $\{a\}$, $\{ab\}$, $\{a, b, ab\}$, $\{u, v, uv\}$.

You may use colors to distinguish the star from the link, but please make a separate sketch for each of the four subsets. Make sure to clearly mark every vertex, edge and face that belongs to a star or a link!